In this section there are several examples and explanation about how to query and download the data from the different investigations.
As aforementioned, note that within the HTTP QUERY
parameter a ADQL language is used
(similar to SQL), and is using URL enconding.
Remember that you will need to log in before download the data (see
Authentication section).
Search for investigation_unique_acronym within the view 'Datasets', where investigation='DCMIX-2'. The products will The results will come in JSON format:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=json&QUERY=SELECT+dataset_name,dataset_unique_acronym,dataset_description,start_date,end_date,prior_access_initial_date,prior_access_end_date+from+hreda.v_dataset+where+investigation_name='DCMIX-2'
Note that some datasets could be restricted depending on the prior access period and security level.
Search for product_type and investigation_name within the view
'File Metadata'.
The results will come in CSV format:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+DISTINCT+investigation_name,product_type+from+hreda.v_file_metadata+order+by+investigation_name,product_type
The previous query provides all product types for all investigations. To show the product types for a given investigation, the query is actually very similar. Here we provide an example using the 'DCMIX-2' investigation:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+DISTINCT+investigation_name,product_type+from+hreda.v_file_metadata+where+investigation_name='DCMIX-2'+order+by+product_type
Search for file_path and file_name within the view 'File Metadata', where investigation='DCMIX-2' and product type name contains 'table'. The products will be downloaded in a compressed file (TAR.GZ):
https://hreda.esac.esa.int/hreda-sl-tap/data?retrieval_type=PRODUCT&QUERY=SELECT+file_path,file_name+from+hreda.v_file_metadata+WHERE+investigation_name='DCMIX-2'+AND+product_type+LIKE+'%25table%25'&compress=true
Note that this url requieres a Log In
Search for file_path and file_name within the view 'File Metadata', where investigation='DCMIX-2' and date is after '2014-02-05 10:00:00'. The products will be downloaded in a compressed file (TAR.GZ):
https://hreda.esac.esa.int/hreda-sl-tap/data?retrieval_type=PRODUCT&QUERY=SELECT+file_path,file_name+from+hreda.v_file_metadata+WHERE+investigation_name='DCMIX-2'+AND+acquisition_time>='2013-12-02 18:15:12.000000'&compress=true
For each investigation, there may be some parameters that are used as search criteria inside the investigation. These values are specific depending on the investigation. In order to search for the list of them:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=json&QUERY=SELECT+DISTINCT+investigation_name,filter_name+from+hreda.v_investigation_filter+order+by+investigation_name
For each investigation some parameters (investigation specific and non-specific) have been identified for being used as search criteria for filtering investigation products. Below, the query for retrieving those investigation filters as well as the value interval that they may take if applicable, is displayed:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+investigation_id,investigation_name,filter_name,filter_type,specific_filter,metadata_field,column_file_metadata,first_date,last_date,min_number,max_number,values_enumeration+FROM+hreda.v_investigtion_filter+order+by+investigation_id
For each investigation we can search based on the specific metadata. Take in account, that the field can not be accessed directly, and you will need to use specific functions depending on the data type. To see the data time, you can use the previous query
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+DISTINCT+file_name,file_path+from+hreda.v_file_metadata+WHERE+extract_json_text(specific_metadata,'runName')='2 '+AND+investigation_name='DCMIX-2'
In order to increase performance, it will be useful to use the filter specific metadata is not null, as in the example:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+DISTINCT+file_name,file_path+from+hreda.v_file_metadata+WHERE+specific_metadata+is+not+null+and+extract_json_text(specific_metadata,'runName')='2'+AND+investigation_name='DCMIX-2'
For each investigation we can select information of the specific metadata. Take in account, that information is split in two fields: specific_metadata that allow filtering and extra_information that does not allow the filtering. Here there is one example for DCMIX3 data:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+DISTINCT+investigation_name+file_name,file_path,specific_metadata,extra_information+from+hreda.v_file_metadata+WHERE+investigation_name='DCMIX-3'
For each investigation it is possible to get the number available Blank Book providing product_type='Investigation Data Blank Book' and the desired investigation thought the investigation_name Here there is one example for DCMIX4 data:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+COUNT+(file_name)+from+hreda.v_file_metadata+WHERE+investigation_name='DCMIX-4'+AND+product_type='Investigation Data Blank Book'
For each investigation it is possible to download the available Blank Book providing product_type='Investigation Data Blank Book' and the desired investigation thought the investigation_name Here there is one example for DCMIX4 data:
https://hreda.esac.esa.int/hreda-sl-tap/data?retrieval_type=PRODUCT&QUERY=SELECT+file_path,file_name+from+hreda.v_file_metadata+WHERE+investigation_name='DCMIX-4'+AND+product_type='Investigation Data Blank Book'&compress=true
For each investigation it is possible to download the last Blank Book providing product_type='Investigation Data Blank Book', the and the desired investigation thought the investigation_name Here there is one example for DCMIX4 data:
https://hreda.esac.esa.int/hreda-sl-tap/data?retrieval_type=blankbook&QUERY=SELECT+file_path,file_name+from+hreda.v_file_metadata+WHERE+investigation_name='DCMIX-4'+AND+product_type='Investigation Data Blank Book'
For each investigation we can select information of the specific ancillary data. Here there is one example for THOR data:
https://hreda.esac.esa.int/hreda-sl-tap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=csv&QUERY=SELECT+DISTINCT+investigation_name,file_name,file_path+from+hreda.v_file_ancillary+WHERE+investigation_name='THOR'
For a given investigation, it is possible to download the ancillary data filtering by different conditions. Here there is one example for THOR data filter by file_size:
https://hreda.esac.esa.int/hreda-sl-tap/data?retrieval_type=PRODUCT&QUERY=SELECT+file_path,file_name+from+hreda.v_file_ancillary+WHERE+investigation_name='THOR'+AND+file_size<'100'&compress=true